
ada Cluster Tutorial
Frank Ferraro

UMBC

Materials

Code: https://github.com/fmof/ada-tutorial.git

https://github.com/fmof/ada-tutorial.git

tl;dr: if you’re comfortable with taki
(or after this session)

● taki group storage is available, but you won’t be able to use the conda
environments I’ve built. You’ll need to make your own.

● Currently, only one partition and no QOSes.
● Required flags for sbatch or srun

○ --gres=gpu:<num>
■ <num> is int specifying the number (not IDs) of GPUs your job needs

○ --time=<wallclock-time>
■ Your job will be killed after <wallclock-time>

○ --mem=<mem-required-in-MB>
■ Your job will be killed if it uses more than <mem> amount of RAM.

● Optional
○ Asking for specific cards: --constraint=<feature>

■ Your job needs nodes that have certain <feature>s
○ Specify your PI group: --account=pi_<your-pi>

General Coding Approach

Task Outline

1. Write your code
2. Perform small-scale testing
3. Perform small-scale testing on the grid (at command

line; synchronous)
4. Run the code on the grid at the scale needed (batch;

asynchronous)

Outline

● Grid Basics
○ What is a grid? Compute+storage+management
○ High-level: How to use a grid

● Submitting jobs
○ Testing → Submitting “real” jobs
○ Managing jobs

● Requesting resources (gotchas)
○ GPUs
○ Memory
○ Time limits
○ Features

How to Ask for Help
nicely :)

1. Read the error (if any) carefully
2. Check your

a. Paths (to code, input files, output files)
b. Missing modules (in your submission script)
c. Check your resources (# CPUs, # nodes, amount of memory, run time, etc.)

3. Read the man pages
4. Do a quick Google search
5. File a ticket: URL TBD

a. If you’re working with me (Frank), cc me on all tickets
b. Currently, contact your PI

What is an HPCC/HPCF?
HPCC/F: High Performance Compute Cluster/Facility

Large collection of connected computers for running experiments
(code)

● compute servers (nodes), each often with
○ Many CPUs
○ A lot of RAM
○ Some/many GPUs

● storage (most of the time)
○ Combination of backed-up and non-backed up storage
○ Often networked

What is an HPCC/HPCF?
HPCC/F: High Performance Compute Cluster/Facility

Large collection of connected computers for running experiments
(code)

● compute servers (nodes), each often with
○ Many CPUs
○ A lot of RAM
○ Some/many GPUs

● storage (most of the time)
○ Combination of backed-up and non-backed up storage
○ Often networked Central scheduling service

(job manager) controls when
jobs run and on what nodes

What is an HPCC/HPCF?
HPCC/F: High Performance Compute Cluster/Facility

Large collection of connected computers for running experiments
(code)

● compute servers (nodes), each often with
○ Many CPUs
○ A lot of RAM
○ Some/many GPUs

● storage (most of the time)
○ Combination of backed-up and non-backed up storage
○ Often networked

Each node can access
the same files

What is an HPCC/HPCF?
HPCC/F: High Performance Compute Cluster/Facility

Large collection of connected computers for running experiments
(code)

● compute servers (nodes), each often with
○ Many CPUs
○ A lot of RAM
○ Some/many GPUs

● storage (most of the time)
○ Combination of backed-up and non-backed up storage
○ Often networked

Each node can
talk to the others

What is an HPCC/HPCF?
HPCC/F: High Performance Compute Cluster/Facility

Large collection of connected computers for running experiments
(code)

● compute servers (nodes), each often with
○ Many CPUs
○ A lot of RAM
○ Some/many GPUs

● storage (most of the time)
○ Combination of backed-up and non-backed up storage
○ Often networked

Each node can
talk to the others

Each node can access
the same files

Central scheduling service
(job manager) controls when
jobs run and on what nodes

Thinking for a Grid
Single Workstation Workflow

Direct
interaction

all-in-one:code + data +
analysis + computer + writing

Thinking for a Grid
Single Workstation Workflow

Direct
interaction

all-in-one:code + data +
analysis + computer + writing

Pros:
● What you’re

familiar with
● Can be easy to

debug

Cons:
● Bandwidth limited
● Non-dedicated,

consumer-grade
● Serial thinking

Overall cost: TIME!

Thinking for a Grid
Single Workstation Workflow

Direct
interaction

all-in-one:code + data +
analysis + computer + writing

Pros:
● What you’re

familiar with
● Can be easy to

debug

Cons:
● Bandwidth limited
● Non-dedicated,

consumer-grade
● Serial thinking

Overall cost: TIME!

Grid Workflow

● Initial dev
● Final analysis

(graphing)
● Writing

code + data + analysis
+ computer

Thinking for a Grid
Single Workstation Workflow

Direct
interaction

all-in-one:code + data +
analysis + computer + writing

Pros:
● What you’re

familiar with
● Can be easy to

debug

Cons:
● Bandwidth limited
● Non-dedicated,

consumer-grade
● Serial thinking

Overall cost: TIME!

Grid Workflow

● Initial dev
● Final analysis

(graphing)
● Writing

Pros:
● Dedicated, enterprise-grade

hardware
● Many more (& powerful)

computers than your laptop
● (Less) bandwidth limited

Cons:
● Learning curve
● Can be harder to

debug
● Shared machines
● You don’t control

the machines

code + data + analysis
+ computer

Login vs. Compute Nodes
login node

Access via: ssh ada[.rs.umbc.edu]

Submit jobs from here

Do NOT run code on this

13 compute nodes

Access via the grid engine (SLURM), not through SSH

“Run” code on these

“Nodes” vs. “CPUs”

Node: a single server (motherboard)

● Nodes can have many CPUs

“CPU”: a virtual core

● Assume one active process per CPU

Memory on node accessible across all
CPUs, but MUST be reserved in advance

“Nodes” vs. “CPUs”

Node: a single server (motherboard)

● Nodes can have many CPUs

“CPU”: a virtual core

● Assume one active process per CPU

Memory on node accessible across all
CPUs, but MUST be reserved in advance

Terminology: Processor vs. CPU

Technically, a processor has many cores,
and a node has many processors. Often,

the distinction among the different
processors, and between processors and

cores, is NOT important.

“node” with 32 “cores” (2*16)

8C/16T
processor (die)

8C/16T
processor (die)

Storage on ada
Path Properties

How to use

Do: Don’t:

home ● /home/${USER_ID}
${HOME}

● Networked storage
● Backed up

● Store code, environment
config files

● (tip) symlink dot
directories to your user
workspace

● Store data
● Store output files

Storage on ada
Path Properties

How to use

Do: Don’t:

home ● /home/${USER_ID}
${HOME}

● Networked storage
● Backed up

● Store code, environment
config files

● (tip) symlink dot
directories to your user
workspace

● Store data
● Store output files

HPCF user
workspace

● ~/${PI}_user →
/umbc/xfs1/${PI}/user/

${USER_ID} Base: /umbc/xfs1/${PI}
● Networked storage
● Not backed up

● Store your specific data
● Your model files
● Experimental output

● Store group relevant
code, data

● Store anything critical

HPCF group
workspace

● ~/${PI}_common →
/umbc/xfs1/${PI}/common

● Store group (shared)
relevant code, data

● Store items for
collaborators

● Store anything critical

Storage on ada
Path Properties

How to use

Do: Don’t:

home ● /home/${USER_ID}
${HOME}

● Networked storage
● Backed up

● Store code, environment
config files

● (tip) symlink dot
directories to your user
workspace

● Store data
● Store output files

HPCF user
workspace

● ~/${PI}_user →
/umbc/xfs1/${PI}/user/

${USER_ID} Base: /umbc/xfs1/${PI}
● Networked storage
● Not backed up

● Store your specific data
● Your model files
● Experimental output

● Store group relevant
code, data

● Store anything critical

HPCF group
workspace

● ~/${PI}_common →
/umbc/xfs1/${PI}/common

● Store group (shared)
relevant code, data

● Store items for
collaborators

● Store anything critical

ada-specific
storage TBD

● Additional ~180TB
Networked storage

● Not backed up

● Store group (shared)
relevant code, data

● Store items that
collabora

● Store anything critical

Storage on ada
Path Properties

How to use

Do: Don’t:

home ● /home/${USER_ID}
${HOME}

● Networked storage
● Backed up

● Store code, environment
config files

● (tip) symlink dot
directories to your user
workspace

● Store data
● Store output files

HPCF user
workspace

● ~/${PI}_user →
/umbc/xfs1/${PI}/user/

${USER_ID} Base: /umbc/xfs1/${PI}
● Networked storage
● Not backed up

● Store your specific data
● Your model files
● Experimental output

● Store group relevant
code, data

● Store anything critical

HPCF group
workspace

● ~/${PI}_common →
/umbc/xfs1/${PI}/common

● Store group (shared)
relevant code, data

● Store items for
collaborators

● Store anything critical

ada-specific
storage TBD

● Additional ~180TB
Networked storage

● Not backed up

● Store group (shared)
relevant code, data

● Store items that
collabora

● Store anything critical

scratch /scratch/${SLURM_JOB_ID}
● Node-specific
● Automatically created &

deleted for each job

● Use for job-specific
intermediate output
files

● Store anything you
don’t need at the end
of a job

Storage on ada
Path Properties

How to use

Do: Don’t:

home ● /home/${USER_ID}
${HOME}

● Networked storage
● Backed up

● Store code, environment
config files

● (tip) symlink dot
directories to your user
workspace

● Store data
● Store output files

HPCF user
workspace

● ~/${PI}_user →
/umbc/xfs1/${PI}/user/

${USER_ID} Base: /umbc/xfs1/${PI}
● Networked storage
● Not backed up

● Store your specific data
● Your model files
● Experimental output

● Store group relevant
code, data

● Store anything critical

HPCF group
workspace

● ~/${PI}_common →
/umbc/xfs1/${PI}/common

● Store group (shared)
relevant code, data

● Store items for
collaborators

● Store anything critical

ada-specific
storage TBD

● Additional ~180TB
Networked storage

● Not backed up

● Store group (shared)
relevant code, data

● Store items that
collabora

● Store anything critical

scratch /scratch/${SLURM_JOB_ID}
● Node-specific
● Automatically created &

deleted for each job

● Use for job-specific
intermediate output
files

● Store anything you
don’t need at the end
of a job

tmp /tmp ● Node-specific --- ● Use, if at all possible

Storage on ada
Path Properties

How to use

Do: Don’t:

home ● /home/${USER_ID}
${HOME}

● Networked storage
● Backed up

● Store code, environment
config files

● (tip) symlink dot
directories to your user
workspace

● Store data
● Store output files

HPCF user
workspace

● ~/${PI}_user →
/umbc/xfs1/${PI}/user/

${USER_ID} Base: /umbc/xfs1/${PI}
● Networked storage
● Not backed up

● Store your specific data
● Your model files
● Experimental output

● Store group relevant
code, data

● Store anything critical

HPCF group
workspace

● ~/${PI}_common →
/umbc/xfs1/${PI}/common

● Store group (shared)
relevant code, data

● Store items for
collaborators

● Store anything critical

ada-specific
storage TBD

● Additional ~180TB
Networked storage

● Not backed up

● Store group (shared)
relevant code, data

● Store items that
collabora

● Store anything critical

scratch /scratch/${SLURM_JOB_ID}
● Node-specific
● Automatically created &

deleted for each job

● Use for job-specific
intermediate output
files

● Store anything you
don’t need at the end
of a job

tmp /tmp ● Node-specific --- ● Use, if at all possible

Always
backup

elsewhere!!!

Partitions vs. Quality of Service (QoS)
“Partitions” group certain nodes together

● Makes scheduling easier
● Clearly state what types of physical resources your jobs

need (and what they don’t)
● Partitions do not have to be mutually exclusive

QoS

● High-level binning of how many of the different
resources you can use

Use both partitions
and QoS to

effectively manage
your jobs

Partitions vs. Quality of Service (QoS)
“Partitions” group certain nodes together

● Makes scheduling easier
● Clearly state what types of physical resources your jobs

need (and what they don’t)
● Partitions do not have to be mutually exclusive

QoS

● High-level binning of how many of the different
resources you can use

Use both partitions
and QoS to

effectively manage
your jobs

Partitions (Groupings) of Compute Nodes
batch develop gpu high_mem support

Basic user
access? Yes Yes Yes No (?) ($$$

from PI)
No (admins

only)

Nodes 100 7 18 42

(full grid)

CPU
distribution 35x16, 65x8

3x1,
2x36,
2x8

17x16; 1x36 42x36

CPUs total 1080 91 308 1512

GPUs per
node 0 0 17x2; 1x4 0

GPUs total 0 0 38 0

SLURM: Overview

Is a job scheduler:
Lets a user request a compute node to do an analysis (job)

Provides a framework (commands) to start, cancel, and monitor a job

Ensures efficient use of shared computing resources

You submit jobs and their resource needs to slurm, not to machines

It manages where they go, prioritization, when they start, …

Everything goes through slurm!
Examples of commands: https://github.com/statgen/SLURM-examples

https://github.com/statgen/SLURM-examples

SLURM: Grid Manager
https://slurm.schedmd.com

“Slurm is an open source, fault-tolerant, and highly scalable cluster management
and job scheduling system for large and small Linux clusters. ... First, it allocates
exclusive and/or non-exclusive access to resources (compute nodes) to users
for some duration of time so they can perform work. Second, it provides a
framework for starting, executing, and monitoring work (normally a parallel job)
on the set of allocated nodes. Finally, it arbitrates contention for resources by
managing a queue of pending work... accounting, advanced reservation, gang
scheduling (time sharing for parallel jobs), backfill scheduling, topology optimized
resource selection, resource limits by user or bank account, and sophisticated
multifactor job prioritization algorithms.”

https://slurm.schedmd.com

Outline

● Grid Basics
○ What is a grid? Compute+storage+management
○ High-level: How to use a grid

● Submitting jobs
○ Testing → Submitting “real” jobs
○ Managing jobs

● Requesting resources (gotchas)
○ GPUs
○ Memory
○ Time limits
○ Features

Re-examining the Grid Workflow

● Initial dev
● Final analysis

(graphing)
● Writing

code + data + analysis
+ computer

Current goal: Perform
small-scale testing on the

grid (at command line;
synchronous)

1. Set up the environment
a. Transfer code (& data, if not

there)
b. Install packages

2. Test interactively if necessary
(should be limited)

Set up the Environment
1. Transfer code

scp -R pytorch-examples ada:.
Or

ssh ada
git clone https://github.com/pytorch/examples.git

2.

Okay, not great

Much better

Set up the Environment
1. Transfer code

scp -R pytorch-examples ada:.
Or

ssh ada
git clone https://github.com/pytorch/examples.git

2. Install packages & libraries
3.

Okay, not great

Much better

Setting up the Environment: modulefiles
● Standard Linux software to help control possibly conflicting software

dependencies
● Encapsulate the environment needed to use each software package in a

module so that users of a shared system can use conflicting software
packages

● Each modulefile updates the necessary, standard environment variables:
○ Binary path ($PATH)
○ Include paths ($CPATH, $C_INCLUDE_PATH, $CPLUS_INCLUDE_PATH)
○ Linking & runtime paths ($LIBRARY_PATH, $LD_LIBRARY_PATH, $PYTHONPATH, etc.)
○ Any other environment variables

Checking for Loaded & Available modulefiles
To see what modules are currently loaded in your session, do:
$ module list

To see what modules are available to be loaded, do:
$ module avail

You can use module avail with grep to find certain modules:

$ module avail 2>&1 | grep -i conda
 Anaconda2/2018.12
 Anaconda2/2019.10 (D)
 Anaconda3/2020.07
 Miniconda3/4.7.10

Writing Your Own modulefiles
You can do this, but that’s for a different time.

Loading conda & creating envs (create-env.bash)
$ mkdir ~/ferraro_user/.ada_conda

$ ln -s ~/ferraro_user/.ada_conda .conda

$ conda create --prefix=ferraro_user/ada_envs/nlp-env \
pytorch torchvision torchaudio torchtext cudatoolkit=11.0 -c pytorch

Do these next two every time you want to load the environment (or memoize it)
$ source /usr/ebuild/software/Anaconda3/2020.07/etc/profile.d/conda.sh

$ conda activate /home/ferraro/ferraro_user/ada_envs/nlp-env

Set up the Environment
1. Transfer code

scp -R pytorch-examples ada:.
Or

ssh ada
git clone https://github.com/pytorch/examples.git

2. Install packages & libraries
3. Transfer data

Okay, not great

Much better

Testing Code on the Grid

DO NOT RUN CODE
ON THE LOGIN

NODE!!!

Testing Code on the Grid
Recommended steps: You’ve already tested your code for obvious bugs.

1. If you must, do small-scale interactive debugging
a. This will become much less necessary as you become more familiar with using slurm.
b. For a variety of reasons, it’s better to limit interactive sessions.

2. Write a batch script.
3. If necessary, do small-scale tests. Then, run more broadly.

Common SLURM Commands

sbatch

srun

scancel

sinfo

squeue

Two SLURM commands: srun and sbatch

● sbatch [options*] script:
Asynchronously

○ Allocate resources from the grid
○ Run script on those nodes/CPUs

● srun [options*] script:
Synchronously

○ Sub-allocate resources from a larger
allocation

○ Run script on those nodes/CPUs
○ (can be run within an sbatch’s script)

srun vs sbatch:
what do you need?

sbatch
sbatch
→ srun

Interactive usage? srun

Batch usage? sbatch (or
sbatch+srun)

Running Synchronous Jobs
srun [options*] script: Synchronously

○ Allocate resources from the grid
○ Run script on those nodes

$ srun --mem=20000 --gres=gpu:1 --time=1:00:00 --constraint=rtx_2080 \

 --pty --preserve-env $SHELL

Running Synchronous Jobs
srun [options*] script: Synchronously

○ Allocate resources from the grid
○ Run script on those nodes

$ srun --mem=20000 --gres=gpu:1 --time=1:00:00 --constraint=rtx_2080 \

 --pty --preserve-env $SHELL

20G max RAM

Running Synchronous Jobs
srun [options*] script: Synchronously

○ Allocate resources from the grid
○ Run script on those nodes

$ srun --mem=20000 --gres=gpu:1 --time=1:00:00 --constraint=rtx_2080 \

 --pty --preserve-env $SHELL

20G max RAM Use one
GPU

Running Synchronous Jobs
srun [options*] script: Synchronously

○ Allocate resources from the grid
○ Run script on those nodes

$ srun --mem=20000 --gres=gpu:1 --time=1:00:00 --constraint=rtx_2080 \

 --pty --preserve-env $SHELL

20G max RAM Run for 1
hour max

Use one
GPU

Running Synchronous Jobs
srun [options*] script: Synchronously

○ Allocate resources from the grid
○ Run script on those nodes

$ srun --mem=20000 --gres=gpu:1 --time=1:00:00 --constraint=rtx_2080 \

 --pty --preserve-env $SHELL

20G max RAM Run for 1
hour max

Use one
GPU

Ask for a node
with 2080 TIs on it

Running Synchronous Jobs
srun [options*] script: Synchronously

○ Allocate resources from the grid
○ Run script on those nodes

$ srun --mem=20000 --gres=gpu:1 --time=1:00:00 --constraint=rtx_2080 \

 --pty --preserve-env $SHELL

Flags for
synchronous

usage

20G max RAM Run for 1
hour max

Use one
GPU

Ask for a node
with 2080 TIs on it

(handy, but
potentially very

brittle!!!)

Running Synchronous Jobs
srun [options*] script: Synchronously

○ Allocate resources from the grid
○ Run script on those nodes

$ srun --mem=20000 --gres=gpu:1 --time=1:00:00 --constraint=rtx_2080 \

 --pty --preserve-env $SHELL

Flags for
synchronous

usage

20G max RAM Run for 1
hour max

Use one
GPU

Ask for a node
with 2080 TIs on it

command to
run

Re-examining the Grid Workflow

● Initial dev
● Final analysis

(graphing)
● Writing

code + data + analysis
+ computer

Current goal: Perform
larger testing on the grid
(batch; asynchronous)

Write an sbatch script that:
1. Requests appropriate resources
2. Sets up the environment

a. Loads modules, sets variables
3. Runs asynchronously

Perform async on the grid: Write an sbatch script

Write an sbatch script that:

1. Requests appropriate resources
2. Sets up the environment

a. Loads modules, sets variables
3. Runs asynchronously

Run async.
sbatch [options*] script: Asynchronously

○ Allocate resources from the grid
○ Run script on those nodes

run-lm.slurm

$ sbatch --mem=20000 --gres=gpu:1 --time=60:00 --constraint=rtx_2080 ./run-lm.slurm

Run async.
sbatch [options*] script: Asynchronously

○ Allocate resources from the grid
○ Run script on those nodes

run-lm.slurm

$ sbatch --mem=20000 --gres=gpu:1 --time=1:00:00 --constraint=rtx_2080 $SHELL

Issues:
1. Output is written to `pwd` on

submission node (in /home)!
2. Still relying on some default for sbatch

options
3. sbatch options are easy to mess up

Run async.
sbatch [options*] script: Asynchronously

○ Allocate resources from the grid
○ Run script on those nodes

run-lm-headers.slurm

$ sbatch $SHELL

$ head -6 run-lm-headers.slurm
#!/bin/bash
#SBATCH --mem=20000
#SBATCH --gres=gpu:1
#SBATCH --time=1:00:00
#SBATCH --constraint=rtx_2080

Advantages:
● Less typing at terminal →

easier to submit
● More self-documenting (how

much memory? time limit?)
● Can be overridden at

command line

Re-examining the Grid Workflow

● Initial dev
● Final analysis

(graphing)
● Writing

code + data + analysis
+ computer

Current goal: Run the code
on the grid at scale

Run our existing sbatch script that:
1. Requests appropriate resources

(batch partition)
2. Sets up the environment

a. Loads modules, sets variables
3. Runs asynchronously

On an arbitrary file, 203 total

Two Ways of Looping

Shell for loop

1. Loop through all needed files
2. Issue a separate sbatch command for each file

SLURM array job

Development sbatch command: sbatch run-lm-headers.slurm

203 files ⇒
203 jobs (1
task each)

Disadvantage: much harder
to control (delete, hold,
release, throttle) jobs

Advantage:
minimal changes

to the script

Two Ways of Looping

Shell for loop

for f in $(find /umbc/xfs1/ferraro/common/data/cac/cawiki-en.text_pos -type f); do
 sbatch `pwd`/scripts/submit_pos_count_headers_arg.slurm “${f}”
done

SLURM array job

Development sbatch command: sbatch `pwd`/scripts/submit_pos_count_with_headers.slurm

203 files ⇒
203 jobs (1
task each)

Disadvantage: much harder
to control (delete, hold,
release, throttle) jobs

Advantage:
minimal changes

to the script

Two Ways of Looping

Shell for loop

for f in $(find /umbc/xfs1/ferraro/common/data/cac/cawiki-en.text_pos -type f); do
 sbatch `pwd`/scripts/submit_pos_count_headers_arg.slurm “${f}”
done

SLURM array job

1. Add logic to the script to associate task IDs with files
2. Add an --array=start-end%throttle flag to the single sbatch command

Development sbatch command: sbatch `pwd`/scripts/submit_pos_count_with_headers.slurm

203 files ⇒
203 jobs (1
task each)

203 files ⇒ 1
job, but with
203 tasks

Advantage:
minimal changes

to the script

Disadvantage: much harder
to control (delete, hold,
release, throttle) jobs

Disadvantage: must
perform integer to

configuration mapping

Advantage: very easy to
control (delete, hold,
release, throttle) jobs

Two Ways of Looping

Shell for loop

for f in $(find /umbc/xfs1/ferraro/common/data/cac/cawiki-en.text_pos -type f); do
 sbatch `pwd`/scripts/submit_pos_count_headers_arg.slurm “${f}”
done

SLURM array job

sbatch --array=0-202%40 `pwd`/scripts/submit_pos_count_headers_dirarg.array.slurm \
 /umbc/xfs1/ferraro/common/data/cac/cawiki-en.text_pos

Development sbatch command: sbatch `pwd`/scripts/submit_pos_count_with_headers.slurm

Needed to update
slurm script to use

command line
arguments

Needed to update
slurm script to use

SLURM array
variables

203 files ⇒
203 jobs (1
task each)

203 files ⇒ 1
job, but with
203 tasks

Advantage:
minimal changes

to the script

Disadvantage: much harder
to control (delete, hold,
release, throttle) jobs

Disadvantage: must
perform integer to

configuration mapping

Advantage: very easy to
control (delete, hold,
release, throttle) jobs

Array Jobs

sbatch [--hold] --array=start-end[%throttle][options*] script

Asynchronously

● Allocate resources from the grid (as given by options*)
● Run script on end-start+1 times

○ Each is a different task ($SLURM_ARRAY_TASK_ID), but under the same, single job
($SLURM_JOB_ID)

○ start, end & throttle are ints

■ start >= 0, end < MaxArraySize (SLURM parameter: 20,000)
■ See /etc/slurm/slurm.conf

○ Allow throttle tasks to run simultaneously (default: run as many as possible)

● A good option is to --hold the jobs too (job control)

(syntax is more general:
read man sbatch) Advanced

Array Job Logic
Use $SLURM_ARRAY_TASK_ID

get the file
file_index=${SLURM_ARRAY_TASK_ID} ## 0-indexed files
input_directory=/umbc/xfs1/ferraro/common/data/cac/cawiki-en.text_pos
input_file=${input_directory}/cawiki-en.${file_index}text_pos.tsv.gz

Advanced

Job Control
Deleting jobs (running or queued)

● If job has ID 10000
○ Non-array jobs (or all tasks in array): scancel 10000
○ Tasks (#0-#14) in array job: scancel 10000_0-14

hold jobs: Add --hold to sbatch command

● Registers job(s) with scheduler but does not queue them to run
● Release jobs with scontrol release. If job has ID 10000

○ Non-array jobs (or all tasks in array): scontrol release 10000
○ Tasks (#0-#14) in array job: scontrol release 10000_0-14

Job dependencies

● Require other job X to complete before Y will run
● See --dependency=<dependency_list> in man sbatch

Advanced

Job Control and Aliases

hpc-tutorial/slurm_aliases.bash

Source this file (source slurm_aliases.bash) to get access to some aliases
(short-cuts) to SLURM management commands. For example:

● sinteract: Get one CPU (with 6GB vMem) on the batch partition (4 hours)
● my-jobs: List the jobs you have submitted (running, queued, pending)
● list-nodes: Show all nodes in the grid, with various resources available

(and more)

SLURM (Array) Job Environment Variables
From the man page for sbatch:

SLURM_JOB_ID: the job

SLURM_ARRAY_JOB_ID: the job ID of the array

SLURM_ARRAY_TASK_ID: will be set to the job array index value

SLURM_ARRAY_TASK_COUNT: will be set to the number of tasks in the job array

SLURM_ARRAY_TASK_MAX: will be set to the highest job array index value (end)

SLURM_ARRAY_TASK_MIN: will be set to the lowest job array index (start)

Outline

● Grid Basics
○ What is a grid? Compute+storage+management
○ High-level: How to use a grid

● Submitting jobs
○ Testing → Submitting “real” jobs
○ Managing jobs

● Requesting resources (gotchas)
○ GPUs
○ Memory
○ Time limits
○ Features

Requesting Memory

● Memory is measured in
○ MB
○ virtual memory

● --mem=<M> provides an upper-bound on the memory needed per node
● --mem-per-cpu=<M> provides a lower-bound on the memory needed per CPU

Requesting GPUs

● Use the --gres=gpu:<number_of_devices_per_node> to request GPUs

● Include --gres=gpu:<num> : if you do, $CUDA_VISIBLE_DEVICES should be properly
set and you shouldn’t clobber anyone else’s jobs

Time Limit

● --time=<T> provides an upper-bound on the wallclock time needed

● Formats (see man sbatch)
○ "minutes"
○ "minutes:seconds"
○ "hours:minutes:seconds"
○ "days-hours"
○ "days-hours:minutes"
○ "days-hours:minutes:seconds"

Features: --constraint=<feature>

Features of node: currently, how to select which type of card you want

● --constraint=rtx_2080
● --constraint=rtx_6000
● --constraint=rtx_8000

Partitions vs. Quality of Service (QoS)
“Partitions” group certain nodes together

● Makes scheduling easier
● Clearly state what types of physical resources your jobs

need (and what they don’t)
● Partitions do not have to be mutually exclusive

QoS

● High-level binning of how many of the different
resources you can use

Use both partitions
and QoS to

effectively manage
your jobs

Quality-of-Service (QoS)

https://hpcf.umbc.edu/scheduling-rules-on-taki/
(check link for most

recent QoS)

https://hpcf.umbc.edu/scheduling-rules-on-maya/

Writing Your Own modulefiles
1. Write a small Tcl file

location: /<path-to-directory-of-my-modules>/<library_name>/<version>
Notice that <version> is a text (tcl) file with no extension

2. Tell modulefiles where to find this new module
a. Add /<path-to-directory-of-my-modules> to a personalized repository for you

$ module use "~/ferraro_common/module_files"

b. This is specific to each shell session: add it to your .bashrc to make it permanent

3. Load it
$ module load <library_name>/<version>

Getting anaconda 2.7 with modulefiles
pi_ferraro conda install

$ module load conda/2.7

$ which python
/umbc/xfs1/ferraro/common/anaconda2
/bin/python

$ python --version
Python 2.7.14 :: Anaconda, Inc.

$ cat ~/ferraro_common/module_files/conda/2.7

#%Module -*- tcl -*-
##
modulefile
##

proc ModulesHelp { } {
 puts stderr "\tAdds Anaconda 2.7 to your
environment variables,"
}
module-whatis "adds Anaconda 2.7 to your
environment variables"

set root
/umbc/xfs1/ferraro/common/anaconda2
prepend-path PATH $root/bin

Outline
● Grid Basics

○ What is a grid? Compute+storage+management
○ High-level: How to use a grid

● Submitting jobs
○ Testing → Submitting “real” jobs
○ Submitting many jobs
○ Managing jobs

● Requesting resources (gotchas)
○ GPUs
○ Memory
○ Time limits
○ Features

Remember: Ask for Help if Needed
nicely :)

1. Read the error (if any) carefully
2. Check your

a. Paths (to code, input files, output files)
b. Missing modules (in your submission

script)
c. Check your resources (# CPUs, # nodes,

amount of memory, run time, etc.)
3. Read the man pages
4. Do a quick Google search
5. File a ticket:

https://doit.umbc.edu/request-tracker-rt/doi
t-research-computing/

a. If you’re working with me (Frank), cc me on
all tickets

Paraphrased from https://testlio.com/blog/the-ideal-bug-report/

“Think of your bug report like a good tweet: You want it short,
sweet, and to the point.”

● Subject: very short (< 10 word) summary of what’s
wrong

● Main body: brief (2-3 sentence) summary of what’s
wrong

● Steps to reproduce
■ Is there a script you can point to?
■ Code environment: what modules are you trying

to use (and where are they)
■ Resources: are you trying to use CPUs, GPUs,

multiple nodes, etc.
● Expected Result
● Actual Result: including clipped error messages is okay

https://doit.umbc.edu/request-tracker-rt/doit-research-computing/
https://doit.umbc.edu/request-tracker-rt/doit-research-computing/
https://testlio.com/blog/the-ideal-bug-report/

